Skip to main content

Dynamic Snippets

Support avatar
Written by Support
Updated over a week ago

You can embed dynamic parameters into your snippets, allowing Franklin to automatically insert variant and case-specific information like the variant's HGVS notation, zygosity, or gene name directly into your text.

Dynamic content is supported in interpretation snippet types: SNP_INTERPRETATION, SV_INTERPRETATION, SOMATIC_SNP_INTERPRETATION, SOMATIC_SV_INTERPRETATION


How It Works

To use a dynamic parameter, add its placeholder into the snippet’s content using the following syntax:

$$parameter_name$$

For example:

This variant occurs in the gene $$gene_symbol$$ and has a zygosity of $$zygosity$$.

When the snippet is inserted in Franklin, the placeholders will be automatically replaced with the actual values from the relevant variant or case.

If a parameter is not available for a particular context, Franklin will display the parameter name (e.g. $$gene_symbol$$) as-is.

Full List of Supported Parameters

SNV

Parameter name

Syntax

Example

chrom

$$chrom$$

chr19

position

$$position$$

4473807

ref

$$ref$$

C

alt

$$alt$$

T

reference_version

$$reference_version$$

HG19

cdot

$$cdot$$

c.5882G>A

pdot

$$pdot$$

p.Gly1961Glu

refseq_transcript

$$refseq_transcript$$

NM_000350.3

ensmbl_transcript

$$ensmbl_transcript$$

ENST00000370225.3

effect

$$effect$$

missense

exon

$$exon$$

42

gene

$$gene$$

ABCA

gene_omim_id

$$gene_omim_id$$

4601691

rs

$$rs$$

rs1800553

vaf

$$vaf$$

45.31

zygosity

$$zygosity$$

Heterozygous

confidence_level

$$confidence_level$$

HIGH

frequency_gnomad_aggregated_ac

$$frequency_gnomad_aggregated_ac$$

1291

frequency_gnomad_aggregated_af

$$frequency_gnomad_aggregated_af$$

0.456

frequency_gnomad_aggregated_an

$$frequency_gnomad_aggregated_an$$

282848

frequency_gnomad_homc

$$frequency_gnomad_homc$$

10

frequency_gnomad_hemc

$$frequency_gnomad_hemc$$

N\A

frequency_exac_af

$$frequency_exac_af$$

0.505

internal_freq_amount_cases

$$internal_freq_amount_cases$$

136

internal_freq_het

$$internal_freq_het$$

90

internal_freq_hom

$$internal_freq_hom$$

46

community_freq_cases

$$community_freq_cases$$

7122

community_freq_het

$$community_freq_het$$

7076

community_freq_hom

$$community_freq_hom$$

170

disease_data

$$disease_data$$

SECORD (OMIM:248200)

pli_score

$$pli_score$$

0

inherited_from

$$inherited_from$$

Father

classification_met_rules

$$classification_met_rules$$

PP3, PM2, PM5, PP2, PP5, PS3

prediction_tool_effect

$$prediction_tool_effect$$

deleterious

prediction_revel_effect

$$prediction_revel_effect$$

deleterious (supporting)

prediction_revel_score

$$prediction_revel_score$$

0.76

prediction_splice_ai_score

$$prediction_splice_ai_score$$

0

prediction_splice_ai_effect

$$prediction_splice_ai_effect$$

Benign

prediction_alpha_missense_score

$$prediction_alpha_missense_score$$

0.853

prediction_alpha_missense_effect

$$prediction_alpha_missense_effect$$

Deleterious (Supporting)

prediction_gerp_score

$$prediction_gerp_score$$

5.35

prediction_gerp_effect

$$prediction_gerp_effect$$

Uncertain

prediction_aggregated_score

$$prediction_aggregated_score$$

0.7325842697

prediction_aggregated_effect

$$prediction_aggregated_effect$$

Deleterious

SV

Parameter name

Syntax

copy_number

$$copy_number$$

internal_occurences

$$internal_occurences$$

clingen_region

$$clingen_region$$

clingen_evidence

$$clingen_evidence$$

cytoband

$$cytoband$$

confidence_level

$$confidence_level$$

zygosity

$$zygosity$$

classification_text

$$classification_text$$

chrom

$$chrom$$

sv_type

$$sv_type$$

start

$$start$$

end

$$end$$

sv_len

$$sv_len$$

reference_version

$$reference_version$$

sv_len_desc

$$sv_len_desc$$

occurrences_aggregated

$$occurrences_aggregated$$

occurrences_gnomad

$$occurrences_gnomad$$

Did this answer your question?